MakeItFrom.com
Menu (ESC)

C82400 Copper vs. S20910 Stainless Steel

C82400 copper belongs to the copper alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
14 to 39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
79
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
780 to 940
Tensile Strength: Yield (Proof), MPa 260 to 970
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 270
1080
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
4.8
Embodied Energy, MJ/kg 140
68
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
460 to 1640
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
28 to 33
Strength to Weight: Bending, points 16 to 26
24 to 27
Thermal Diffusivity, mm2/s 39
3.6
Thermal Shock Resistance, points 17 to 36
17 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
20.5 to 23.5
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
52.1 to 62.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.2
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0