MakeItFrom.com
Menu (ESC)

C82400 Copper vs. S41041 Stainless Steel

C82400 copper belongs to the copper alloys classification, while S41041 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
910
Tensile Strength: Yield (Proof), MPa 260 to 970
580

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 270
740
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
29
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 26
3.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
2.2
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
140
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
860
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
32
Strength to Weight: Bending, points 16 to 26
27
Thermal Diffusivity, mm2/s 39
7.8
Thermal Shock Resistance, points 17 to 36
33

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.050
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.13 to 0.18
Chromium (Cr), % 0 to 0.1
11.5 to 13
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
84.5 to 87.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.2
0 to 0.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0