MakeItFrom.com
Menu (ESC)

C82500 Copper vs. ASTM A414 Steel

C82500 copper belongs to the copper alloys classification, while ASTM A414 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is ASTM A414 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
15 to 26
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
360 to 590
Tensile Strength: Yield (Proof), MPa 310 to 980
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 280
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
49 to 50
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.2 to 7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.3 to 8.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8 to 7.9
Embodied Carbon, kg CO2/kg material 10
1.5 to 1.6
Embodied Energy, MJ/kg 160
20 to 22
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
69 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
100 to 330
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 35
13 to 21
Strength to Weight: Bending, points 17 to 27
14 to 20
Thermal Diffusivity, mm2/s 38
13
Thermal Shock Resistance, points 19 to 38
11 to 17