MakeItFrom.com
Menu (ESC)

C82500 Copper vs. Grade CW6MC Nickel

C82500 copper belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
79
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
540
Tensile Strength: Yield (Proof), MPa 310 to 980
310

Thermal Properties

Latent Heat of Fusion, J/g 240
330
Maximum Temperature: Mechanical, °C 280
980
Melting Completion (Liquidus), °C 980
1480
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 21
1.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 10
14
Embodied Energy, MJ/kg 160
200
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
130
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
240
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18 to 35
18
Strength to Weight: Bending, points 17 to 27
17
Thermal Diffusivity, mm2/s 38
2.8
Thermal Shock Resistance, points 19 to 38
15

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
20 to 23
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
0
Iron (Fe), % 0 to 0.25
0 to 5.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.2
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0