MakeItFrom.com
Menu (ESC)

C82500 Copper vs. C27200 Brass

Both C82500 copper and C27200 brass are copper alloys. They have 64% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
10 to 50
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
370 to 590
Tensile Strength: Yield (Proof), MPa 310 to 980
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 280
130
Melting Completion (Liquidus), °C 980
920
Melting Onset (Solidus), °C 860
870
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
28
Electrical Conductivity: Equal Weight (Specific), % IACS 21
31

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
110 to 810
Stiffness to Weight: Axial, points 7.7
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18 to 35
13 to 20
Strength to Weight: Bending, points 17 to 27
14 to 19
Thermal Diffusivity, mm2/s 38
37
Thermal Shock Resistance, points 19 to 38
12 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
62 to 65
Iron (Fe), % 0 to 0.25
0 to 0.070
Lead (Pb), % 0 to 0.020
0 to 0.070
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
34.6 to 38
Residuals, % 0
0 to 0.3