MakeItFrom.com
Menu (ESC)

C82500 Copper vs. C83400 Brass

Both C82500 copper and C83400 brass are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
30
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
42
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
240
Tensile Strength: Yield (Proof), MPa 310 to 980
69

Thermal Properties

Latent Heat of Fusion, J/g 240
200
Maximum Temperature: Mechanical, °C 280
180
Melting Completion (Liquidus), °C 980
1040
Melting Onset (Solidus), °C 860
1020
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
44
Electrical Conductivity: Equal Weight (Specific), % IACS 21
46

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
55
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
21
Stiffness to Weight: Axial, points 7.7
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18 to 35
7.7
Strength to Weight: Bending, points 17 to 27
9.9
Thermal Diffusivity, mm2/s 38
57
Thermal Shock Resistance, points 19 to 38
8.4

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 1.9 to 2.3
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
88 to 92
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0 to 0.020
0 to 0.5
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.35
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.1
0 to 0.2
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
8.0 to 12
Residuals, % 0
0 to 0.7