MakeItFrom.com
Menu (ESC)

C82500 Copper vs. C85900 Brass

Both C82500 copper and C85900 brass are copper alloys. They have 61% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.0 to 20
30
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
460
Tensile Strength: Yield (Proof), MPa 310 to 980
190

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 280
130
Melting Completion (Liquidus), °C 980
830
Melting Onset (Solidus), °C 860
790
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 130
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
25
Electrical Conductivity: Equal Weight (Specific), % IACS 21
28

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 10
2.9
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
110
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
170
Stiffness to Weight: Axial, points 7.7
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 18 to 35
16
Strength to Weight: Bending, points 17 to 27
17
Thermal Diffusivity, mm2/s 38
29
Thermal Shock Resistance, points 19 to 38
16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 1.9 to 2.3
0
Boron (B), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
58 to 62
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0 to 0.020
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0 to 0.2
0 to 1.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.2 to 0.35
0 to 0.25
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.1
0 to 1.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7