MakeItFrom.com
Menu (ESC)

C82500 Copper vs. C90500 Gun Metal

Both C82500 copper and C90500 gun metal are copper alloys. They have 88% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
320
Tensile Strength: Yield (Proof), MPa 310 to 980
160

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 280
170
Melting Completion (Liquidus), °C 980
1000
Melting Onset (Solidus), °C 860
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 130
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
11
Electrical Conductivity: Equal Weight (Specific), % IACS 21
11

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 10
3.6
Embodied Energy, MJ/kg 160
59
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
54
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
110
Stiffness to Weight: Axial, points 7.7
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 35
10
Strength to Weight: Bending, points 17 to 27
12
Thermal Diffusivity, mm2/s 38
23
Thermal Shock Resistance, points 19 to 38
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 1.9 to 2.3
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
86 to 89
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0 to 0.020
0 to 0.3
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0.2 to 0.35
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
9.0 to 11
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
1.0 to 3.0
Residuals, % 0
0 to 0.3