C82500 Copper vs. C94700 Bronze
Both C82500 copper and C94700 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is C82500 copper and the bottom bar is C94700 bronze.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 120 | |
110 |
Elongation at Break, % | 1.0 to 20 | |
7.9 to 32 |
Poisson's Ratio | 0.33 | |
0.34 |
Shear Modulus, GPa | 45 | |
43 |
Tensile Strength: Ultimate (UTS), MPa | 550 to 1100 | |
350 to 590 |
Tensile Strength: Yield (Proof), MPa | 310 to 980 | |
160 to 400 |
Thermal Properties
Latent Heat of Fusion, J/g | 240 | |
200 |
Maximum Temperature: Mechanical, °C | 280 | |
190 |
Melting Completion (Liquidus), °C | 980 | |
1030 |
Melting Onset (Solidus), °C | 860 | |
900 |
Specific Heat Capacity, J/kg-K | 390 | |
380 |
Thermal Conductivity, W/m-K | 130 | |
54 |
Thermal Expansion, µm/m-K | 17 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 20 | |
12 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 21 | |
12 |
Otherwise Unclassified Properties
Density, g/cm3 | 8.8 | |
8.8 |
Embodied Carbon, kg CO2/kg material | 10 | |
3.5 |
Embodied Energy, MJ/kg | 160 | |
56 |
Embodied Water, L/kg | 310 | |
350 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 11 to 94 | |
41 to 89 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 400 to 4000 | |
110 to 700 |
Stiffness to Weight: Axial, points | 7.7 | |
7.3 |
Stiffness to Weight: Bending, points | 19 | |
18 |
Strength to Weight: Axial, points | 18 to 35 | |
11 to 19 |
Strength to Weight: Bending, points | 17 to 27 | |
13 to 18 |
Thermal Diffusivity, mm2/s | 38 | |
16 |
Thermal Shock Resistance, points | 19 to 38 | |
12 to 21 |
Alloy Composition
Aluminum (Al), % | 0 to 0.15 | |
0 to 0.0050 |
Antimony (Sb), % | 0 | |
0 to 0.15 |
Beryllium (Be), % | 1.9 to 2.3 | |
0 |
Chromium (Cr), % | 0 to 0.1 | |
0 |
Cobalt (Co), % | 0.15 to 0.7 | |
0 |
Copper (Cu), % | 95.3 to 97.8 | |
85 to 90 |
Iron (Fe), % | 0 to 0.25 | |
0 to 0.25 |
Lead (Pb), % | 0 to 0.020 | |
0 to 0.1 |
Manganese (Mn), % | 0 | |
0 to 0.2 |
Nickel (Ni), % | 0 to 0.2 | |
4.5 to 6.0 |
Phosphorus (P), % | 0 | |
0 to 0.050 |
Silicon (Si), % | 0.2 to 0.35 | |
0 to 0.0050 |
Sulfur (S), % | 0 | |
0 to 0.050 |
Tin (Sn), % | 0 to 0.1 | |
4.5 to 6.0 |
Titanium (Ti), % | 0 to 0.12 | |
0 |
Zinc (Zn), % | 0 to 0.1 | |
1.0 to 2.5 |
Residuals, % | 0 | |
0 to 1.3 |