MakeItFrom.com
Menu (ESC)

C82500 Copper vs. S17700 Stainless Steel

C82500 copper belongs to the copper alloys classification, while S17700 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is S17700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
1.0 to 23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
1180 to 1650
Tensile Strength: Yield (Proof), MPa 310 to 980
430 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 280
890
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 10
2.8
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
15 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
460 to 3750
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 35
42 to 59
Strength to Weight: Bending, points 17 to 27
32 to 40
Thermal Diffusivity, mm2/s 38
4.1
Thermal Shock Resistance, points 19 to 38
39 to 54

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.75 to 1.5
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.1
16 to 18
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
0
Iron (Fe), % 0 to 0.25
70.5 to 76.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0