MakeItFrom.com
Menu (ESC)

C82500 Copper vs. S30815 Stainless Steel

C82500 copper belongs to the copper alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
680
Tensile Strength: Yield (Proof), MPa 310 to 980
350

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 280
1020
Melting Completion (Liquidus), °C 980
1400
Melting Onset (Solidus), °C 860
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 10
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
260
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
310
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 35
25
Strength to Weight: Bending, points 17 to 27
22
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 19 to 38
15

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.1
20 to 22
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
0
Iron (Fe), % 0 to 0.25
62.8 to 68.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.2
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
1.4 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0