MakeItFrom.com
Menu (ESC)

C82500 Copper vs. S31266 Stainless Steel

C82500 copper belongs to the copper alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.0 to 20
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
81
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
860
Tensile Strength: Yield (Proof), MPa 310 to 980
470

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 280
1100
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 10
6.5
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
290
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
540
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 35
29
Strength to Weight: Bending, points 17 to 27
24
Thermal Diffusivity, mm2/s 38
3.1
Thermal Shock Resistance, points 19 to 38
18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
23 to 25
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
1.0 to 2.5
Iron (Fe), % 0 to 0.25
34.1 to 46
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0 to 0.2
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0