MakeItFrom.com
Menu (ESC)

C82500 Copper vs. S35315 Stainless Steel

C82500 copper belongs to the copper alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
740
Tensile Strength: Yield (Proof), MPa 310 to 980
300

Thermal Properties

Latent Heat of Fusion, J/g 240
330
Maximum Temperature: Mechanical, °C 280
1100
Melting Completion (Liquidus), °C 980
1370
Melting Onset (Solidus), °C 860
1330
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 10
5.7
Embodied Energy, MJ/kg 160
81
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
270
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
230
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 35
26
Strength to Weight: Bending, points 17 to 27
23
Thermal Diffusivity, mm2/s 38
3.1
Thermal Shock Resistance, points 19 to 38
17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.1
24 to 26
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
0
Iron (Fe), % 0 to 0.25
33.6 to 40.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.2
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0