MakeItFrom.com
Menu (ESC)

C82600 Copper vs. ASTM A372 Grade M Steel

C82600 copper belongs to the copper alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
18 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
810 to 910
Tensile Strength: Yield (Proof), MPa 320 to 1070
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
450
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 20
9.1

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 11
2.0
Embodied Energy, MJ/kg 180
27
Embodied Water, L/kg 310
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
160
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
1140 to 1580
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 36
29 to 32
Strength to Weight: Bending, points 17 to 28
24 to 27
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 19 to 39
24 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0 to 0.1
1.5 to 2.0
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
92.5 to 95.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.2
2.8 to 3.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.35
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0

Comparable Variants