MakeItFrom.com
Menu (ESC)

C82600 Copper vs. EN 1.4057 Stainless Steel

C82600 copper belongs to the copper alloys classification, while EN 1.4057 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is EN 1.4057 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
11 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
840 to 980
Tensile Strength: Yield (Proof), MPa 320 to 1070
530 to 790

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
850
Melting Completion (Liquidus), °C 950
1440
Melting Onset (Solidus), °C 860
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.9

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 11
2.2
Embodied Energy, MJ/kg 180
32
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
96 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
700 to 1610
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 36
30 to 35
Strength to Weight: Bending, points 17 to 28
26 to 28
Thermal Diffusivity, mm2/s 37
6.7
Thermal Shock Resistance, points 19 to 39
30 to 35

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0.12 to 0.22
Chromium (Cr), % 0 to 0.1
15 to 17
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
77.7 to 83.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.2
1.5 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0

Comparable Variants