MakeItFrom.com
Menu (ESC)

C82600 Copper vs. EN 1.4310 Stainless Steel

C82600 copper belongs to the copper alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
14 to 45
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
730 to 900
Tensile Strength: Yield (Proof), MPa 320 to 1070
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 300
910
Melting Completion (Liquidus), °C 950
1420
Melting Onset (Solidus), °C 860
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 11
2.9
Embodied Energy, MJ/kg 180
42
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
170 to 830
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 36
26 to 32
Strength to Weight: Bending, points 17 to 28
23 to 27
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 19 to 39
15 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
16 to 19
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
66.4 to 78
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.2
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.35
0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0