MakeItFrom.com
Menu (ESC)

C82600 Copper vs. EN 2.4851 Nickel

C82600 copper belongs to the copper alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
650
Tensile Strength: Yield (Proof), MPa 320 to 1070
230

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 300
1200
Melting Completion (Liquidus), °C 950
1360
Melting Onset (Solidus), °C 860
1310
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 20
1.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 11
8.1
Embodied Energy, MJ/kg 180
120
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
170
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
130
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18 to 36
22
Strength to Weight: Bending, points 17 to 28
20
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 19 to 39
17

Alloy Composition

Aluminum (Al), % 0 to 0.15
1.0 to 1.7
Beryllium (Be), % 2.3 to 2.6
0
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.1
21 to 25
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0 to 0.5
Iron (Fe), % 0 to 0.25
7.7 to 18
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
58 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0