MakeItFrom.com
Menu (ESC)

C82600 Copper vs. CR009A Copper

Both C82600 copper and CR009A copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is CR009A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.0 to 20
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
43
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
230
Tensile Strength: Yield (Proof), MPa 320 to 1070
140

Thermal Properties

Latent Heat of Fusion, J/g 240
210
Maximum Temperature: Mechanical, °C 300
200
Melting Completion (Liquidus), °C 950
1090
Melting Onset (Solidus), °C 860
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 130
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
100
Electrical Conductivity: Equal Weight (Specific), % IACS 20
100

Otherwise Unclassified Properties

Density, g/cm3 8.7
9.0
Embodied Carbon, kg CO2/kg material 11
2.6
Embodied Energy, MJ/kg 180
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
31
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
83
Stiffness to Weight: Axial, points 7.8
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 36
7.1
Strength to Weight: Bending, points 17 to 28
9.3
Thermal Diffusivity, mm2/s 37
110
Thermal Shock Resistance, points 19 to 39
8.1

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Antimony (Sb), % 0
0 to 0.00040
Arsenic (As), % 0
0 to 0.00050
Beryllium (Be), % 2.3 to 2.6
0
Bismuth (Bi), % 0
0 to 0.00020
Cadmium (Cd), % 0
0 to 0.00010
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
99.99 to 100
Iron (Fe), % 0 to 0.25
0 to 0.0010
Lead (Pb), % 0 to 0.020
0 to 0.00050
Manganese (Mn), % 0
0 to 0.00050
Nickel (Ni), % 0 to 0.2
0 to 0.0010
Phosphorus (P), % 0
0 to 0.0030
Selenium (Se), % 0
0 to 0.00020
Silicon (Si), % 0.2 to 0.35
0
Silver (Ag), % 0
0 to 0.0025
Sulfur (S), % 0
0 to 0.0015
Tellurium (Te), % 0
0 to 0.00020
Tin (Sn), % 0 to 0.1
0 to 0.00020
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 0.00010
Residuals, % 0 to 0.5
0