MakeItFrom.com
Menu (ESC)

C82600 Copper vs. SAE-AISI 5140 Steel

C82600 copper belongs to the copper alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
12 to 29
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
560 to 970
Tensile Strength: Yield (Proof), MPa 320 to 1070
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
420
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 20
8.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 11
1.4
Embodied Energy, MJ/kg 180
19
Embodied Water, L/kg 310
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
220 to 1880
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 36
20 to 34
Strength to Weight: Bending, points 17 to 28
19 to 28
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 19 to 39
16 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.1
0.7 to 0.9
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
97.3 to 98.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.7 to 0.9
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.35
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0