MakeItFrom.com
Menu (ESC)

C82600 Copper vs. C31600 Bronze

Both C82600 copper and C31600 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
6.7 to 28
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 46
42
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
270 to 460
Tensile Strength: Yield (Proof), MPa 320 to 1070
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 240
200
Maximum Temperature: Mechanical, °C 300
180
Melting Completion (Liquidus), °C 950
1040
Melting Onset (Solidus), °C 860
1010
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
32
Electrical Conductivity: Equal Weight (Specific), % IACS 20
33

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 180
43
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
28 to 690
Stiffness to Weight: Axial, points 7.8
7.1
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 36
8.5 to 15
Strength to Weight: Bending, points 17 to 28
11 to 15
Thermal Diffusivity, mm2/s 37
42
Thermal Shock Resistance, points 19 to 39
9.4 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
87.5 to 90.5
Iron (Fe), % 0 to 0.25
0 to 0.1
Lead (Pb), % 0 to 0.020
1.3 to 2.5
Nickel (Ni), % 0 to 0.2
0.7 to 1.2
Phosphorus (P), % 0
0.040 to 0.1
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
5.2 to 10.5
Residuals, % 0
0 to 0.4