MakeItFrom.com
Menu (ESC)

C82600 Copper vs. C67600 Bronze

Both C82600 copper and C67600 bronze are copper alloys. They have 59% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is C67600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.0 to 20
13 to 33
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
430 to 570
Tensile Strength: Yield (Proof), MPa 320 to 1070
170 to 380

Thermal Properties

Latent Heat of Fusion, J/g 240
170
Maximum Temperature: Mechanical, °C 300
120
Melting Completion (Liquidus), °C 950
890
Melting Onset (Solidus), °C 860
870
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
24
Electrical Conductivity: Equal Weight (Specific), % IACS 20
27

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 11
2.8
Embodied Energy, MJ/kg 180
47
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
63 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
140 to 680
Stiffness to Weight: Axial, points 7.8
7.2
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 18 to 36
15 to 20
Strength to Weight: Bending, points 17 to 28
16 to 19
Thermal Diffusivity, mm2/s 37
35
Thermal Shock Resistance, points 19 to 39
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
57 to 60
Iron (Fe), % 0 to 0.25
0.4 to 1.3
Lead (Pb), % 0 to 0.020
0.5 to 1.0
Manganese (Mn), % 0
0.050 to 0.5
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
0.5 to 1.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
35.2 to 41.6
Residuals, % 0
0 to 0.5