MakeItFrom.com
Menu (ESC)

C82600 Copper vs. C70700 Copper-nickel

Both C82600 copper and C70700 copper-nickel are copper alloys. They have 90% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.0 to 20
39
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
46
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
320
Tensile Strength: Yield (Proof), MPa 320 to 1070
110

Thermal Properties

Latent Heat of Fusion, J/g 240
220
Maximum Temperature: Mechanical, °C 300
220
Melting Completion (Liquidus), °C 950
1120
Melting Onset (Solidus), °C 860
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 130
59
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
11
Electrical Conductivity: Equal Weight (Specific), % IACS 20
12

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 11
3.4
Embodied Energy, MJ/kg 180
52
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
100
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
51
Stiffness to Weight: Axial, points 7.8
7.6
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18 to 36
10
Strength to Weight: Bending, points 17 to 28
12
Thermal Diffusivity, mm2/s 37
17
Thermal Shock Resistance, points 19 to 39
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
88.5 to 90.5
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
9.5 to 10.5
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5