MakeItFrom.com
Menu (ESC)

C82600 Copper vs. N06603 Nickel

C82600 copper belongs to the copper alloys classification, while N06603 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
28
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
740
Tensile Strength: Yield (Proof), MPa 320 to 1070
340

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 300
1000
Melting Completion (Liquidus), °C 950
1340
Melting Onset (Solidus), °C 860
1300
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 20
1.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 11
8.4
Embodied Energy, MJ/kg 180
120
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
170
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
300
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 36
25
Strength to Weight: Bending, points 17 to 28
22
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 19 to 39
20

Alloy Composition

Aluminum (Al), % 0 to 0.15
2.4 to 3.0
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0 to 0.1
24 to 26
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0 to 0.5
Iron (Fe), % 0 to 0.25
8.0 to 11
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0 to 0.2
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0.2 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.1
0.010 to 0.1
Residuals, % 0 to 0.5
0