MakeItFrom.com
Menu (ESC)

C82600 Copper vs. S13800 Stainless Steel

C82600 copper belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
11 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
980 to 1730
Tensile Strength: Yield (Proof), MPa 320 to 1070
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
810
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 11
3.4
Embodied Energy, MJ/kg 180
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
1090 to 5490
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 36
35 to 61
Strength to Weight: Bending, points 17 to 28
28 to 41
Thermal Diffusivity, mm2/s 37
4.3
Thermal Shock Resistance, points 19 to 39
33 to 58

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.9 to 1.4
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
12.3 to 13.2
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
73.6 to 77.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.2
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.2 to 0.35
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0