MakeItFrom.com
Menu (ESC)

C82600 Copper vs. S20161 Stainless Steel

C82600 copper belongs to the copper alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
980
Tensile Strength: Yield (Proof), MPa 320 to 1070
390

Thermal Properties

Latent Heat of Fusion, J/g 240
330
Maximum Temperature: Mechanical, °C 300
870
Melting Completion (Liquidus), °C 950
1380
Melting Onset (Solidus), °C 860
1330
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.9

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.5
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 180
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
360
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
390
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 18 to 36
36
Strength to Weight: Bending, points 17 to 28
29
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 19 to 39
22

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
15 to 18
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
65.6 to 73.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.2
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0