MakeItFrom.com
Menu (ESC)

C82600 Copper vs. S30615 Stainless Steel

C82600 copper belongs to the copper alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
75
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
690
Tensile Strength: Yield (Proof), MPa 320 to 1070
310

Thermal Properties

Latent Heat of Fusion, J/g 240
340
Maximum Temperature: Mechanical, °C 300
960
Melting Completion (Liquidus), °C 950
1370
Melting Onset (Solidus), °C 860
1320
Specific Heat Capacity, J/kg-K 390
500
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.6
Embodied Carbon, kg CO2/kg material 11
3.7
Embodied Energy, MJ/kg 180
53
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
220
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
260
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 36
25
Strength to Weight: Bending, points 17 to 28
23
Thermal Diffusivity, mm2/s 37
3.7
Thermal Shock Resistance, points 19 to 39
16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.8 to 1.5
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0 to 0.1
17 to 19.5
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
56.7 to 65.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.2
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.35
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0