MakeItFrom.com
Menu (ESC)

C82700 Copper vs. 6013 Aluminum

C82700 copper belongs to the copper alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C82700 copper and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 1.8
3.4 to 22
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 46
26
Tensile Strength: Ultimate (UTS), MPa 1200
310 to 410
Tensile Strength: Yield (Proof), MPa 1020
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 300
160
Melting Completion (Liquidus), °C 950
650
Melting Onset (Solidus), °C 860
580
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
38
Electrical Conductivity: Equal Weight (Specific), % IACS 21
120

Otherwise Unclassified Properties

Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
200 to 900
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 38
31 to 41
Strength to Weight: Bending, points 29
37 to 44
Thermal Diffusivity, mm2/s 39
60
Thermal Shock Resistance, points 41
14 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.15
94.8 to 97.8
Beryllium (Be), % 2.4 to 2.6
0
Chromium (Cr), % 0 to 0.090
0 to 0.1
Copper (Cu), % 94.6 to 96.7
0.6 to 1.1
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0.2 to 0.8
Nickel (Ni), % 1.0 to 1.5
0
Silicon (Si), % 0 to 0.15
0.6 to 1.0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15