MakeItFrom.com
Menu (ESC)

C82700 Copper vs. ACI-ASTM CN7M Steel

C82700 copper belongs to the copper alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
44
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1200
480
Tensile Strength: Yield (Proof), MPa 1020
200

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 300
1100
Melting Completion (Liquidus), °C 950
1410
Melting Onset (Solidus), °C 860
1450
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 21
1.8

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 12
5.6
Embodied Energy, MJ/kg 180
78
Embodied Water, L/kg 310
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
170
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
110
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 29
17
Thermal Diffusivity, mm2/s 39
5.6
Thermal Shock Resistance, points 41
12

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.090
19 to 22
Copper (Cu), % 94.6 to 96.7
3.0 to 4.0
Iron (Fe), % 0 to 0.25
37.4 to 48.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 1.0 to 1.5
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0