MakeItFrom.com
Menu (ESC)

C82700 Copper vs. AISI 418 Stainless Steel

C82700 copper belongs to the copper alloys classification, while AISI 418 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is AISI 418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1200
1100
Tensile Strength: Yield (Proof), MPa 1020
850

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 300
770
Melting Completion (Liquidus), °C 950
1500
Melting Onset (Solidus), °C 860
1460
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 21
3.1

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 180
41
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
170
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
1830
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
38
Strength to Weight: Bending, points 29
29
Thermal Diffusivity, mm2/s 39
6.7
Thermal Shock Resistance, points 41
40

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0 to 0.090
12 to 14
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
78.5 to 83.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.0 to 1.5
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0