MakeItFrom.com
Menu (ESC)

C82700 Copper vs. AISI 436 Stainless Steel

C82700 copper belongs to the copper alloys classification, while AISI 436 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1200
500
Tensile Strength: Yield (Proof), MPa 1020
270

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
880
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.8

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 180
38
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
110
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
190
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 39
6.7
Thermal Shock Resistance, points 41
18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.090
16 to 18
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
77.8 to 83.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.75 to 1.3
Nickel (Ni), % 1.0 to 1.5
0
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0