MakeItFrom.com
Menu (ESC)

C82700 Copper vs. ASTM A229 Spring Steel

C82700 copper belongs to the copper alloys classification, while ASTM A229 spring steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is ASTM A229 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 1200
1690 to 1890
Tensile Strength: Yield (Proof), MPa 1020
1100 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
400
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 180
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
200 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
3260 to 4080
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
60 to 67
Strength to Weight: Bending, points 29
40 to 43
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 41
54 to 60

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.55 to 0.85
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
97.5 to 99
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 1.2
Nickel (Ni), % 1.0 to 1.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0