MakeItFrom.com
Menu (ESC)

C82700 Copper vs. ASTM A387 Grade 2 Steel

C82700 copper belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 1200
470 to 550
Tensile Strength: Yield (Proof), MPa 1020
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
420
Melting Completion (Liquidus), °C 950
1470
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
1.6
Embodied Energy, MJ/kg 180
20
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
180 to 320
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
16 to 20
Strength to Weight: Bending, points 29
17 to 19
Thermal Diffusivity, mm2/s 39
12
Thermal Shock Resistance, points 41
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0 to 0.090
0.5 to 0.8
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
97.1 to 98.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 1.0 to 1.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0