MakeItFrom.com
Menu (ESC)

C82700 Copper vs. ASTM B817 Type I

C82700 copper belongs to the copper alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.8
4.0 to 13
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 1200
770 to 960
Tensile Strength: Yield (Proof), MPa 1020
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 300
340
Melting Completion (Liquidus), °C 950
1600
Melting Onset (Solidus), °C 860
1550
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 130
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.4
Embodied Carbon, kg CO2/kg material 12
38
Embodied Energy, MJ/kg 180
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
2310 to 3540
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 38
48 to 60
Strength to Weight: Bending, points 29
42 to 49
Thermal Diffusivity, mm2/s 39
2.9
Thermal Shock Resistance, points 41
54 to 68

Alloy Composition

Aluminum (Al), % 0 to 0.15
5.5 to 6.8
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.25
0 to 0.4
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 1.0 to 1.5
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0 to 0.15
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4