MakeItFrom.com
Menu (ESC)

C82700 Copper vs. EN 1.0038 Steel

C82700 copper belongs to the copper alloys classification, while EN 1.0038 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
23 to 25
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 1200
380 to 430
Tensile Strength: Yield (Proof), MPa 1020
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 180
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
110 to 130
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
13 to 15
Strength to Weight: Bending, points 29
15 to 16
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 41
12 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0 to 0.090
0 to 0.3
Copper (Cu), % 94.6 to 96.7
0 to 0.6
Iron (Fe), % 0 to 0.25
97.1 to 100
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 1.0 to 1.5
0 to 0.3
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.15
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0