MakeItFrom.com
Menu (ESC)

C82700 Copper vs. EN 1.0411 Steel

C82700 copper belongs to the copper alloys classification, while EN 1.0411 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is EN 1.0411 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
12 to 26
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 1200
420 to 570
Tensile Strength: Yield (Proof), MPa 1020
270 to 480

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.0

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 180
18
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
43 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
190 to 610
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
15 to 20
Strength to Weight: Bending, points 29
16 to 20
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 41
13 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.020 to 0.060
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.18 to 0.22
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
98.7 to 99.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.7 to 0.9
Nickel (Ni), % 1.0 to 1.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0