MakeItFrom.com
Menu (ESC)

C82700 Copper vs. EN 1.4568 Stainless Steel

C82700 copper belongs to the copper alloys classification, while EN 1.4568 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is EN 1.4568 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
2.3 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 1200
830 to 1620
Tensile Strength: Yield (Proof), MPa 1020
330 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
890
Melting Completion (Liquidus), °C 950
1420
Melting Onset (Solidus), °C 860
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
2.8
Embodied Energy, MJ/kg 180
40
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
36 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
290 to 5710
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
30 to 58
Strength to Weight: Bending, points 29
25 to 40
Thermal Diffusivity, mm2/s 39
4.3
Thermal Shock Resistance, points 41
23 to 46

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.7 to 1.5
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.090
16 to 18
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
70.9 to 76.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.0 to 1.5
6.5 to 7.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0