MakeItFrom.com
Menu (ESC)

C82700 Copper vs. EN 1.4923 Stainless Steel

C82700 copper belongs to the copper alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
12 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 1200
870 to 980
Tensile Strength: Yield (Proof), MPa 1020
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 300
740
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 21
3.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 180
41
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
570 to 1580
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
31 to 35
Strength to Weight: Bending, points 29
26 to 28
Thermal Diffusivity, mm2/s 39
6.5
Thermal Shock Resistance, points 41
30 to 34

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0 to 0.090
11 to 12.5
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
83.5 to 87.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 1.0 to 1.5
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0