MakeItFrom.com
Menu (ESC)

C82700 Copper vs. EN AC-43500 Aluminum

C82700 copper belongs to the copper alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C82700 copper and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
72
Elongation at Break, % 1.8
4.5 to 13
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 46
27
Tensile Strength: Ultimate (UTS), MPa 1200
220 to 300
Tensile Strength: Yield (Proof), MPa 1020
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 240
550
Maximum Temperature: Mechanical, °C 300
170
Melting Completion (Liquidus), °C 950
600
Melting Onset (Solidus), °C 860
590
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
38
Electrical Conductivity: Equal Weight (Specific), % IACS 21
130

Otherwise Unclassified Properties

Density, g/cm3 8.7
2.6
Embodied Carbon, kg CO2/kg material 12
7.8
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 310
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
130 to 200
Stiffness to Weight: Axial, points 7.8
16
Stiffness to Weight: Bending, points 19
54
Strength to Weight: Axial, points 38
24 to 33
Strength to Weight: Bending, points 29
32 to 39
Thermal Diffusivity, mm2/s 39
60
Thermal Shock Resistance, points 41
10 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.15
86.4 to 90.5
Beryllium (Be), % 2.4 to 2.6
0
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
0 to 0.050
Iron (Fe), % 0 to 0.25
0 to 0.25
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0
0.4 to 0.8
Nickel (Ni), % 1.0 to 1.5
0
Silicon (Si), % 0 to 0.15
9.0 to 11.5
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.070
Residuals, % 0
0 to 0.15