MakeItFrom.com
Menu (ESC)

C82700 Copper vs. SAE-AISI 1010 Steel

C82700 copper belongs to the copper alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
22 to 31
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 1200
350 to 400
Tensile Strength: Yield (Proof), MPa 1020
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
400
Melting Completion (Liquidus), °C 950
1470
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
47
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
12
Electrical Conductivity: Equal Weight (Specific), % IACS 21
14

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 180
18
Embodied Water, L/kg 310
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
100 to 290
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
12 to 14
Strength to Weight: Bending, points 29
14 to 15
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 41
11 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
99.18 to 99.62
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 0.6
Nickel (Ni), % 1.0 to 1.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0