MakeItFrom.com
Menu (ESC)

C82700 Copper vs. SAE-AISI 1055 Steel

C82700 copper belongs to the copper alloys classification, while SAE-AISI 1055 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
11 to 14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
72
Tensile Strength: Ultimate (UTS), MPa 1200
730 to 750
Tensile Strength: Yield (Proof), MPa 1020
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
11
Electrical Conductivity: Equal Weight (Specific), % IACS 21
12

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 180
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
440 to 1070
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
26
Strength to Weight: Bending, points 29
23
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 41
23 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.5 to 0.6
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
98.4 to 98.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 1.0 to 1.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0