MakeItFrom.com
Menu (ESC)

C82700 Copper vs. SAE-AISI 4340 Steel

C82700 copper belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
12 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 1200
690 to 1280
Tensile Strength: Yield (Proof), MPa 1020
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
430
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.7
Embodied Energy, MJ/kg 180
22
Embodied Water, L/kg 310
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
590 to 3490
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
24 to 45
Strength to Weight: Bending, points 29
22 to 33
Thermal Diffusivity, mm2/s 39
12
Thermal Shock Resistance, points 41
20 to 38

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.090
0.7 to 0.9
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
95.1 to 96.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 1.0 to 1.5
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0