MakeItFrom.com
Menu (ESC)

C82700 Copper vs. SAE-AISI 8740 Steel

C82700 copper belongs to the copper alloys classification, while SAE-AISI 8740 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is SAE-AISI 8740 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
11 to 23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 1200
580 to 670
Tensile Strength: Yield (Proof), MPa 1020
380 to 570

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
410
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.4

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
1.5
Embodied Energy, MJ/kg 180
20
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
390 to 850
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
20 to 24
Strength to Weight: Bending, points 29
20 to 22
Thermal Diffusivity, mm2/s 39
10
Thermal Shock Resistance, points 41
17 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0 to 0.090
0.4 to 0.6
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
96.5 to 97.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.75 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 1.0 to 1.5
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0