MakeItFrom.com
Menu (ESC)

C82700 Copper vs. N07716 Nickel

C82700 copper belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 1200
860
Tensile Strength: Yield (Proof), MPa 1020
350

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 300
980
Melting Completion (Liquidus), °C 950
1480
Melting Onset (Solidus), °C 860
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 21
1.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.5
Embodied Carbon, kg CO2/kg material 12
13
Embodied Energy, MJ/kg 180
190
Embodied Water, L/kg 310
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
240
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
300
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 38
28
Strength to Weight: Bending, points 29
24
Thermal Diffusivity, mm2/s 39
2.8
Thermal Shock Resistance, points 41
24

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.35
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
19 to 22
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
0 to 11.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 1.0 to 1.5
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
1.0 to 1.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0