MakeItFrom.com
Menu (ESC)

C82700 Copper vs. S13800 Stainless Steel

C82700 copper belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
11 to 18
Poisson's Ratio 0.33
0.28
Rockwell C Hardness 39
30 to 51
Shear Modulus, GPa 46
77
Tensile Strength: Ultimate (UTS), MPa 1200
980 to 1730
Tensile Strength: Yield (Proof), MPa 1020
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
810
Melting Completion (Liquidus), °C 950
1450
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
3.4
Embodied Energy, MJ/kg 180
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
1090 to 5490
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
35 to 61
Strength to Weight: Bending, points 29
28 to 41
Thermal Diffusivity, mm2/s 39
4.3
Thermal Shock Resistance, points 41
33 to 58

Alloy Composition

Aluminum (Al), % 0 to 0.15
0.9 to 1.4
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.090
12.3 to 13.2
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
73.6 to 77.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 1.0 to 1.5
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0