MakeItFrom.com
Menu (ESC)

C82700 Copper vs. S17400 Stainless Steel

C82700 copper belongs to the copper alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.8
11 to 21
Poisson's Ratio 0.33
0.28
Rockwell C Hardness 39
27 to 43
Shear Modulus, GPa 46
75
Tensile Strength: Ultimate (UTS), MPa 1200
910 to 1390
Tensile Strength: Yield (Proof), MPa 1020
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
850
Melting Completion (Liquidus), °C 950
1440
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 180
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
880 to 4060
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
32 to 49
Strength to Weight: Bending, points 29
27 to 35
Thermal Diffusivity, mm2/s 39
4.5
Thermal Shock Resistance, points 41
30 to 46

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.090
15 to 17
Copper (Cu), % 94.6 to 96.7
3.0 to 5.0
Iron (Fe), % 0 to 0.25
70.4 to 78.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.0 to 1.5
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0