MakeItFrom.com
Menu (ESC)

C82700 Copper vs. S31254 Stainless Steel

C82700 copper belongs to the copper alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
80
Tensile Strength: Ultimate (UTS), MPa 1200
720
Tensile Strength: Yield (Proof), MPa 1020
330

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 300
1090
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 12
5.5
Embodied Energy, MJ/kg 180
74
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
240
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
270
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 39
3.8
Thermal Shock Resistance, points 41
15

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.090
19.5 to 20.5
Copper (Cu), % 94.6 to 96.7
0.5 to 1.0
Iron (Fe), % 0 to 0.25
51.4 to 56.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 1.0 to 1.5
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0