MakeItFrom.com
Menu (ESC)

C82700 Copper vs. S39277 Stainless Steel

C82700 copper belongs to the copper alloys classification, while S39277 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.8
28
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 46
80
Tensile Strength: Ultimate (UTS), MPa 1200
930
Tensile Strength: Yield (Proof), MPa 1020
660

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 300
1100
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
4.2
Embodied Energy, MJ/kg 180
59
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
240
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
1070
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
33
Strength to Weight: Bending, points 29
27
Thermal Diffusivity, mm2/s 39
4.2
Thermal Shock Resistance, points 41
26

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.090
24 to 26
Copper (Cu), % 94.6 to 96.7
1.2 to 2.0
Iron (Fe), % 0 to 0.25
56.8 to 64.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 1.0 to 1.5
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.8
Sulfur (S), % 0
0 to 0.0020
Tin (Sn), % 0 to 0.1
0
Tungsten (W), % 0
0.8 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0