MakeItFrom.com
Menu (ESC)

C82700 Copper vs. S44660 Stainless Steel

C82700 copper belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.8
20
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 46
81
Tensile Strength: Ultimate (UTS), MPa 1200
660
Tensile Strength: Yield (Proof), MPa 1020
510

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 300
1100
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 860
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.9

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
4.3
Embodied Energy, MJ/kg 180
61
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
120
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
640
Stiffness to Weight: Axial, points 7.8
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 29
22
Thermal Diffusivity, mm2/s 39
4.5
Thermal Shock Resistance, points 41
21

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.4 to 2.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.090
25 to 28
Copper (Cu), % 94.6 to 96.7
0
Iron (Fe), % 0 to 0.25
60.4 to 71
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 1.0 to 1.5
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0