MakeItFrom.com
Menu (ESC)

C82800 Copper vs. AISI 302B Stainless Steel

C82800 copper belongs to the copper alloys classification, while AISI 302B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is AISI 302B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
45
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 45 to 85
84
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
580
Tensile Strength: Yield (Proof), MPa 380 to 1000
230

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Maximum Temperature: Mechanical, °C 310
930
Melting Completion (Liquidus), °C 930
1400
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
3.0
Embodied Energy, MJ/kg 190
43
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
140
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
21
Strength to Weight: Bending, points 20 to 28
20
Thermal Diffusivity, mm2/s 36
4.4
Thermal Shock Resistance, points 23 to 39
13

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
17 to 19
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
65.7 to 73
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.2
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.35
2.0 to 3.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0