MakeItFrom.com
Menu (ESC)

C82800 Copper vs. AISI 310MoLN Stainless Steel

C82800 copper belongs to the copper alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
28
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 45 to 85
84
Shear Modulus, GPa 46
80
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
610
Tensile Strength: Yield (Proof), MPa 380 to 1000
290

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.4

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
5.0
Embodied Energy, MJ/kg 190
70
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
200
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
21
Strength to Weight: Bending, points 20 to 28
20
Thermal Diffusivity, mm2/s 36
3.7
Thermal Shock Resistance, points 23 to 39
14

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
24 to 26
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
45.2 to 53.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 0 to 0.2
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0